
LEARNING OUTCOMES

 Understanding the problem and corresponding requirement for development of software.

 Phases of the system development life cycle.

 develop data flow diagrams

 Perform a feasibility study of the system.

 Write detailed design specifications for programs and database.

 Select methods for evaluating the effectiveness and efficiency of a system.

 Apply different testing techniques on simple program.

CHAPTER 1

1. INTRODUCTION

The term software engineering is composed of two words, software and engineering.

Software is more than just a program code. A program is an executable code, which serves some

computational purpose. Software is considered to be a collection of executable programming

code, associated libraries and documentations. Software, when made for a specific requirement is

called software product.

Engineering on the other hand, is all about developing products, using well-defined, scientific

principles and methods.

So, we can define software engineering as an engineering branch associated with the

development of software product using well-defined scientific principles, methods and

procedures. The outcome of software engineering is efficient and reliable software

product.Software engineering is application of a systematic and disciplined approach to the

development, operation and maintenance of software in an efficient and cost effective way.

1.1 Programmes v/s Software product

Programmes: A computer program is a sequence of instructions, written to perform a specified

task with a computer. A collection of computer programs and related data is referred as software.

Software program: there are three basic entities which are generally used while defining the

principles of software engineering are –

1. Software process

2. Software projects

3. Software products

1.2 Difference between programmes and software product

 Programmes are set of instructions

for computer to perform a specified

task.

 Programmes are developed by

individuals.

 Programmes are smaller in size.

 In case of programmes, programmer

himself is the sole user.

 In programmes, very little

documentation is required.

 Software product is merchandise

consisting of a computer program

that is offered to sale.

 Software products are developed by

multiple users.

 Software products are extremely

large in size.

 In software products, most users are

not involved with development.

 Software products must be well

documented.

1.3 Emergence of software engineering

1. Early computer programming:- early commercial computer were very slow and too

elementary as compared to today’s standards. In 1968, key concept of modularity and

information hiding were also introduced to help programmer’s deals with every increasing

complexity of software system.

2. High level programming:- the high level language that are more powerful, easier to use and

directed towards specialized classes of problems. A list of some high level language:- COBOL,

PL/I, BASIC, PASCEL, C, C++, JAVA, FORTAN

1.4 SOFTWARE DESIGN

Software design process has two levels:-

1. System design or external design

2. Internal design or detail design

There are basically three approaches to software design-

 Data structured oriented design

 Control flow based design

 Object oriented design

CHAPTER 2

2. LIFE CYCLE MODEL

A software life cycle model (also called process model) is a descriptive and diagrammatic

representation of the software life cycle. A life cycle model represents all the activities required

to make a software product transit through its life cycle phases. It also captures the order in

which these activities are to be undertaken. In other words, a life cycle model maps the different

activities performed on a software product from its inception to retirement. Different life cycle

models may map the basic development activities to phases in different ways. Thus, no matter

which life cycle model is followed, the basic activities are included in all life cycle models

though the activities may be carried out in different orders in different life cycle models. During

any life cycle phase, more than one activity may also be carried out.

2.1 THE NEED FOR A SOFTWARE LIFE CYCLE MODEL

The development team must identify a suitable life cycle model for the particular project and

then adhere to it. Without using of a particular life cycle model the development of a software

product would not be in a systematic and disciplined manner. When a software product is being

developed by a team there must be a clear understanding among team members about when and

what to do. Otherwise it would lead to chaos and project failure. This problem can be illustrated

by using an example. Suppose a software development problem is divided into several parts and

the parts are assigned to the team members. From then on, suppose the team members are

allowed the freedom to develop the parts assigned to them in whatever way they like. It is

possible that one member might start writing the code for his part, another might decide to

prepare the test documents first, and some other engineer might begin with the design phase of

the parts assigned to him. This would be one of the perfect recipes for project failure. A software

life cycle model defines entry and exit criteria for every phase. A phase can start only if its

phase-entry criteria have been satisfied. So without software life cycle model the entry and exit

criteria for a phase cannot be recognized. Without software life cycle models it becomes difficult

for software project managers to monitor the progress of the project.

Different software life cycle models

Many life cycle models have been proposed so far. Each of them has some advantages as well as

some disadvantages. A few important and commonly used life cycle models are as follows:

 Classical Waterfall Model

 Iterative Waterfall Model

 Prototyping Model

 Evolutionary Model

 Spiral Model

2.1.1 CLASSICAL WATERFALL MODEL

The classical waterfall model is intuitively the most obvious way to develop software. Though

the classical waterfall model is elegant and intuitively obvious, it is not a practical model in the

sense that it cannot be used in actual software development projects. Thus, this model can be

considered to be a theoretical way of developing software. But all other life cycle models are

essentially derived from the classical waterfall model. So, in order to be able to appreciate other

life cycle models it is necessary to learn the classical waterfall model. Classical waterfall model

divides the life cycle into the following phases

Feasibility study - The main aim of feasibility study is to determine whether it would be

financially and technically feasible to develop the product.

 At first project managers or team leaders try to have a rough understanding of what is

required to be done by visiting the client side. They study different input data to the

system and output data to be produced by the system. They study what kind of processing

is needed to be done on these data and they look at the various constraints on the

behavior of the system.

 After they have an overall understanding of the problem they investigate the different

solutions that are possible. Then they examine each of the solutions in terms of what kind

of resources required, what would be the cost of development and what would be the

development time for each solution.

 Based on this analysis they pick the best solution and determine whether the solution is

feasible financially and technically. They check whether the customer budget would meet

the cost of the product and whether they have sufficient technical expertise in the area of

development.

Requirements analysis and specification: - The aim of the requirements analysis and

specification phase is to understand the exact requirements of the customer and to document

them properly. This phase consists of two distinct activities, namely

 Requirements gathering and analysis

 Requirements specification

The goal of the requirements gathering activity is to collect all relevant information from the

customer regarding the product to be developed. This is done to clearly understand the customer

requirements so that incompleteness and inconsistencies are removed.

The requirements analysis activity is begun by collecting all relevant data regarding the product

to be developed from the users of the product and from the customer through interviews and

discussions. For example, to perform the requirements analysis of a business accounting software

required by an organization, the analyst might interview all the accountants of the organization to

ascertain their requirements. The data collected from such a group of users usually contain

several contradictions and ambiguities, since each user typically has only a partial and

incomplete view of the system. Therefore it is necessary to identify all ambiguities and

contradictions in the requirements and resolve them through further discussions with the

customer. After all ambiguities, inconsistencies, and incompleteness have been resolved and all

the requirements properly understood, the requirements specification activity can start. During

this activity, the user requirements are systematically organized into a Software Requirements

Specification (SRS) document. The customer requirements identified during the requirements

gathering and analysis activity are organized into a SRS document. The important components of

this document are functional requirements, the nonfunctional requirements, and the goals of

implementation.

Design: - The goal of the design phase is to transform the requirements specified in the SRS

document into a structure that is suitable for implementation in some programming language. In

technical terms, during the design phase the software architecture is derived from the SRS

document. Two distinctly different approaches are available: the traditional design approach and

the object-oriented design approach.

 Traditional design approach -Traditional design consists of two different activities; first a

structured analysis of the requirements specification is carried out where the detailed

structure of the problem is examined. This is followed by a structured design activity.

During structured design, the results of structured analysis are transformed into the

software design.

 Object-oriented design approach -In this technique, various objects that occur in the

problem domain and the solution domain are first identified, and the different

relationships that exist among these objects are identified. The object structure is further

refined to obtain the detailed design.

Coding and unit testing:-The purpose of the coding phase (sometimes called the implementation

phase) of software development is to translate the software design into source code. Each

component of the design is implemented as a program module. The end-product of this phase is a

set of program modules that have been individually tested. During this phase, each module is

unit tested to determine the correct working of all the individual modules. It involves testing each

module in isolation as this is the most efficient way to debug the errors identified at this stage.

Integration and system testing: -Integration of different modules is undertaken once they have

been coded and unit tested. During the integration and system testing phase, the modules are

integrated in a planned manner. The different modules making up a software product are almost

never integrated in one shot. Integration is normally carried out incrementally over a number of

steps. During each integration step, the partially integrated system is tested and a set of

previously planned modules are added to it. Finally, when all the modules have been successfully

integrated and tested, system testing is carried out. The goal of system testing is to ensure that

the developed system conforms to its requirements laid out in the SRS document. System testing

usually consists of three different kinds of testing activities:

 α – testing: It is the system testing performed by the development team.

 β –testing: It is the system testing performed by a friendly set of customers.

 Acceptance testing: It is the system testing performed by the customer himself after the

product delivery to determine whether to accept or reject the delivered product.

System testing is normally carried out in a planned manner according to the system test plan

document. The system test plan identifies all testing-related activities that must be performed,

specifies the schedule of testing, and allocates resources. It also lists all the test cases and the

expected outputs for each test case.

Maintenance: -Maintenance of a typical software product requires much more than the effort

necessary to develop the product itself. Many studies carried out in the past confirm this and

indicate that the relative effort of development of a typical software product to its maintenance

effort is roughly in the 40:60 ratios. Maintenance involves performing any one or more of the

following three kinds of activities:

 Correcting errors that were not discovered during the product development phase. This is

called corrective maintenance.

 Improving the implementation of the system, and enhancing the functionalities of the

system according to the customer’s requirements. This is called perfective maintenance.

 Porting the software to work in a new environment. For example, porting may be

required to get the software to work on a new computer platform or with a new operating

system. This is called adaptive maintenance.

Shortcomings of the classical waterfall model

The classical waterfall model is an idealistic one since it assumes that no development error is

ever committed by the engineers during any of the life cycle phases. However, in practical

development environments, the engineers do commit a large number of errors in almost every

phase of the life cycle. The source of the defects can be many: oversight, wrong assumptions, use

of inappropriate technology, communication gap among the project engineers, etc. These defects

usually get detected much later in the life cycle. For example, a design defect might go unnoticed

till we reach the coding or testing phase. Once a defect is detected, the engineers need to go back

to the phase where the defect had occurred and redo some of the work done during that phase

and the subsequent phases to correct the defect and its effect on the later phases. Therefore, in

any practical software development work, it is not possible to strictly follow the classical

waterfall model.

2.1.2 ITERATIVE WATERFALL MODEL

To overcome the major shortcomings of the classical waterfall model, we come up with the

iterative waterfall model.

Here, we provide feedback paths for error correction as & when detected later in a phase.

Though errors are inevitable, but it is desirable to detect them in the same phase in which they

occur. If so, this can reduce the effort to correct the bug.

The advantage of this model is that there is a working model of the system at a very early stage

of development which makes it easier to find functional or design flaws. Finding issues at an

early stage of development enables to take corrective measures in a limited budget.

The disadvantage with this SDLC model is that it is applicable only to large and bulky software

development projects. This is because it is hard to break a small software system into further

small serviceable increments/modules.

2.1.3 PRTOTYPING MODEL

A prototype is a toy implementation of the system. A prototype usually exhibits limited

functional capabilities, low reliability, and inefficient performance compared to the actual

software. A prototype is usually built using several shortcuts. The shortcuts might involve using

inefficient, inaccurate, or dummy functions. The shortcut implementation of a function, for

example, may produce the desired results by using a table look-up instead of performing the

actual computations. A prototype usually turns out to be a very crude version of the actual

system.

Need for a prototype in software development

There are several uses of a prototype. An important purpose is to illustrate the input data formats,

messages, reports, and the interactive dialogues to the customer. This is a valuable mechanism

for gaining better understanding of the customer’s needs:

 how the screens might look like

 how the user interface would behave

 how the system would produce outputs

Another reason for developing a prototype is that it is impossible to get the perfect product in the

first attempt. Many researchers and engineers advocate that if you want to develop a good

product you must plan to throw away the first version. The experience gained in developing the

prototype can be used to develop the final product.

A prototyping model can be used when technical solutions are unclear to the development team.

A developed prototype can help engineers to critically examine the technical issues associated

with the product development. Often, major design decisions depend on issues like the response

time of a hardware controller, or the efficiency of a sorting algorithm, etc. In such circumstances,

a prototype may be the best or the only way to resolve the technical issues.

A prototype of the actual product is preferred in situations such as:

• User requirements are not complete

• Technical issues are not clear

2.1.4 EVOLUTIONARY MODEL

It is also called successive versions model or incremental model. At first, a simple working

model is built. Subsequently it undergoes functional improvements & we keep on adding new

functions till the desired system is built.

Applications:

 Large projects where you can easily find modules for incremental implementation. Often

used when the customer wants to start using the core features rather than waiting for the

full software.

 Also used in object oriented software development because the system can be easily

portioned into units in terms of objects.

Advantages:

 User gets a chance to experiment partially developed system

 Reduce the error because the core modules get tested thoroughly.

Disadvantages:

 It is difficult to divide the problem into several versions that would be acceptable to the

customer which can be incrementally implemented & delivered.

2.1.5 SPIRAL MODEL

The Spiral model of software development is shown in fig. The diagrammatic representation of

this model appears like a spiral with many loops. The exact number of loops in the spiral is not

fixed. Each loop of the spiral represents a phase of the software process. For example, the

innermost loop might be concerned with feasibility study, the next loop with requirements

specification, the next one with design, and so on. Each phase in this model is split into four

sectors (or quadrants) as shown in fig. 4.1. The following activities are carried out during each

phase of a spiral model.

First quadrant (Objective Setting)

• During the first quadrant, it is needed to identify the objectives of the phase.

• Examine the risks associated with these objectives.

Second Quadrant (Risk Assessment and Reduction)

• A detailed analysis is carried out for each identified project risk.

• Steps are taken to reduce the risks. For example, if there is a risk that the requirements are

inappropriate, a prototype system may be developed.

Third Quadrant (Development and Validation)

• Develop and validate the next level of the product after resolving the identified risks.

Fourth Quadrant (Review and Planning)

• Review the results achieved so far with the customer and plan the next iteration around the

spiral.

• Progressively more complete version of the software gets built with each iteration around the

spiral.

Circumstances to use spiral model

The spiral model is called a meta model since it encompasses all other life cycle models. Risk

handling is inherently built into this model. The spiral model is suitable for development of

technically challenging software products that are prone to several kinds of risks. However, this

model is much more complex than the other models – this is probably a factor deterring its use in

ordinary projects.

2.2 Comparison of different life-cycle models

The classical waterfall model can be considered as the basic model and all other life cycle

models as embellishments of this model. However, the classical waterfall model cannot be used

in practical development projects, since this model supports no mechanism to handle the errors

committed during any of the phases.

This problem is overcome in the iterative waterfall model. The iterative waterfall model is

probably the most widely used software development model evolved so far. This model is simple

to understand and use. However this model is suitable only for well-understood problems; it is

not suitable for very large projects and for projects that are subject to many risks.

The prototyping model is suitable for projects for which either the user requirements or the

underlying technical aspects are not well understood. This model is especially popular for

development of the user-interface part of the projects.

The evolutionary approach is suitable for large problems which can be decomposed into a set of

modules for incremental development and delivery. This model is also widely used for object-

oriented development projects. Of course, this model can only be used if the incremental delivery

of the system is acceptable to the customer.

The spiral model is called a meta model since it encompasses all other life cycle models. Risk

handling is inherently built into this model. The spiral model is suitable for development of

technically challenging software products that are prone to several kinds of risks. However, this

model is much more complex than the other models – this is probably a factor deterring its use in

ordinary projects.

The different software life cycle models can be compared from the viewpoint of the customer.

Initially, customer confidence in the development team is usually high irrespective of the

development model followed. During the lengthy development process, customer confidence

normally drops off, as no working product is immediately visible. Developers answer customer

queries using technical slang, and delays are announced. This gives rise to customer resentment.

On the other hand, an evolutionary approach lets the customer experiment with a working

product much earlier than the monolithic approaches. Another important advantage of the

incremental model is that it reduces the customer’s trauma of getting used to an entirely new

system. The gradual introduction of the product via incremental phases provides time to the

customer to adjust to the new product. Also, from the customer’s financial viewpoint,

incremental development does not require a large upfront capital outlay. The customer can order

the incremental versions as and when he can afford them.

CHAPTER 3

3. Responsibilities of a software project manager

Software project managers take the overall responsibility of steering a project to success. It is

very difficult to objectively describe the job responsibilities of a project manager. The job

responsibility of a project manager ranges from invisible activities like building up team morale

to highly visible customer presentations. Most managers take responsibility for project proposal

writing, project cost estimation, scheduling, project staffing, software process tailoring, project

monitoring and control, software configuration management, risk management, interfacing with

clients, managerial report writing and presentations, etc. These activities are certainly numerous,

varied and difficult to enumerate, but these activities can be broadly classified into project

planning, and project monitoring and control activities. The project planning activity is

undertaken before the development starts to plan the activities to be undertaken during

development. The project monitoring and control activities are undertaken once the development

activities start with the aim of ensuring that the development proceeds as per plan and changing

the plan whenever required to cope up with the situation.

3.1 Skills necessary for software project management

A theoretical knowledge of different project management techniques is certainly necessary to

become a successful project manager. However, effective software project management

frequently calls for good qualitative judgment and decision taking capabilities. In addition to

having a good grasp of the latest software project management techniques such as cost

estimation, risk management, configuration management, project managers need good

communication skills and the ability get work done. However, some skills such as tracking and

controlling the progress of the project, customer interaction, managerial presentations, and team

building are largely acquired through experience. None the less, the importance of sound

knowledge of the prevalent project management techniques cannot be overemphasized.

3.2 Project planning

Once a project is found to be feasible, software project managers undertake project planning.

Project planning is undertaken and completed even before any development activity starts.

Project planning consists of the following essential activities:

 • Estimating the following attributes of the project:

Project size: What will be problem complexity in terms of the effort and time required to develop

the product?

Cost: How much is it going to cost to develop the project?

Duration: How long is it going to take to complete development?

 Effort: How much effort would be required?

 The effectiveness of the subsequent planning activities is based on the accuracy of these

estimations.

 • Scheduling manpower and other resources

• Staff organization and staffing plans

• Risk identification, analysis, and abatement planning

• Miscellaneous plans such as quality assurance plan, configuration management plan, etc.

3.3 Metrics for software project size estimation

 Accurate estimation of the problem size is fundamental to satisfactory estimation of effort, time

duration and cost of a software project. In order to be able to accurately estimate the project size,

some important metrics should be defined in terms of which the project size can be expressed.

The size of a problem is obviously not the number of bytes that the source code occupies. It is

neither the byte size of the executable code. The project size is a measure of the problem

complexity in terms of the effort and time required to develop the product. Currently two metrics

are popularly being used widely to estimate size: lines of code (LOC) and function point (FP).

The usage of each of these metrics in project size estimation has its own advantages and

disadvantages.

3.3.1 Lines of Code (LOC)

 LOC is the simplest among all metrics available to estimate project size. This metric is very

popular because it is the simplest to use. Using this metric, the project size is estimated by

counting the number of source instructions in the developed program. Obviously, while counting

the number of source instructions, lines used for commenting the code and the header lines

should be ignored. Determining the LOC count at the end of a project is a very simple job.

However, accurate estimation of the LOC count at the beginning of a project is very difficult. In

order to estimate the LOC count at the beginning of a project, project managers usually divide

the problem into modules, and each module into sub modules and so on, until the sizes of the

different leaf-level modules can be approximately predicted. To be able to do this, past

experience in developing similar products is helpful. By using the estimation of the lowest level

modules, project managers arrive at the total size estimation.

3.3.2 Function point (FP)

Function point metric was proposed by Albrecht [1983]. This metric overcomes many of the

shortcomings of the LOC metric. Since its inception in late 1970s, function point metric has been

slowly gaining popularity. One of the important advantages of using the function point metric is

that it can be used to easily estimate the size of a software product directly from the problem

specification. This is in contrast to the LOC metric, where the size can be accurately determined

only after the product has fully been developed.

The conceptual idea behind the function point metric is that the size of a software product is

directly dependent on the number of different functions or features it supports. A software

product supporting many features would certainly be of larger size than a product with less

number of features. Each function when invoked reads some input data and transforms it to the

corresponding output data. For example, the issue book feature (as shown in fig. 11.2) of a

Library Automation Software takes the name of the book as input and displays its location and

the number of copies available. Thus, a computation of the number of input and the output data

values to a system gives some indication of the number of functions supported by the system.

Albrecht postulated that in addition to the number of basic functions that a software performs,

the size is also dependent on the number of files and the number of interfaces.

Besides using the number of input and output data values, function point metric computes the

size of a software product (in units of functions points or FPs) using three other characteristics of

the product as shown in the following expression. The size of a product in function points (FP)

can be expressed as the weighted sum of these five problem characteristics. The weights

associated with the five characteristics were proposed empirically and validated by the

observations over many projects. Function point is computed in two steps. The first step is to

compute the unadjusted function point (UFP). UFP = (Number of inputs)*4 + (Number of

outputs)*5 + (Number of inquiries)*4 + (Number of files)*10 + (Number of interfaces)*10

Number of inputs: Each data item input by the user is counted. Data inputs should be

distinguished from user inquiries. Inquiries are user commands such as print-account-balance.

Inquiries are counted separately. It must be noted that individual data items input by the user are

not considered in the calculation of the number of inputs, but a group of related inputs are

considered as a single input.

For example, while entering the data concerning an employee to an employee pay roll software;

the data items name, age, sex, address, phone number, etc. are together considered as a single

input. All these data items can be considered to be related, since they pertain to a single

employee. Number of outputs: The outputs considered refer to reports printed, screen outputs,

error messages produced, etc. While outputting the number of outputs the individual data items

within a report are not considered, but a set of related data items is counted as one input. Number

of inquiries: Number of inquiries is the number of distinct interactive queries which can be made

by the users. These inquiries are the user commands which require specific action by the system.

Number of files: Each logical file is counted. A logical file means groups of logically related

data. Thus, logical files can be data structures or physical files. Number of interfaces: Here the

interfaces considered are the interfaces used to exchange information with other systems.

Examples of such interfaces are data files on tapes, disks, communication links with other

systems etc. Once the unadjusted function point (UFP) is computed, the technical complexity

factor (TCF) is computed next. TCF refines the UFP measure by considering fourteen other

factors such as high transaction rates, throughput, and response time requirements, etc. Each of

these 14 factors is assigned from 0 (not present or no influence) to 6 (strong influence) . The

resulting numbers are summed, yielding the total degree of influence (DI). Now, TCF is

computed as (0.65+0.01*DI). As DI can vary from 0 to 70, TCF can vary from 0.65 to 1.35.

Finally, FP=UFP*TCF.

3.4 COCOMO MODEL

Organic, Semidetached and Embedded software projects

Boehm postulated that any software development project can be classified into one of the

following three categories based on the development complexity: organic, semidetached, and

embedded. In order to classify a product into the identified categories, Boehm not only

considered the characteristics of the product but also those of the development team and

development environment. Roughly speaking, these three product classes correspond to

application, utility and system programs, respectively. Normally, data processing programs are

considered to be application programs. Compilers, linkers, etc., are utility programs. Operating

systems and real-time system programs, etc. are system programs. System programs interact

directly with the hardware and typically involve meeting timing constraints and concurrent

processing.

Boehm’s [1981] definition of organic, semidetached, and embedded systems are elaborated

below.

Organic: A development project can be considered of organic type, if the project deals with

developing a well understood application program, the size of the development team is

reasonably small, and the team members are experienced in developing similar types of projects.

Semidetached: A development project can be considered of semidetached type, if the

development consists of a mixture of experienced and inexperienced staff. Team members may

have limited experience on related systems but may be unfamiliar with some aspects of the

system being developed.

Embedded: A development project is considered to be of embedded type, if the software being

developed is strongly coupled to complex hardware, or if the stringent regulations on the

operational procedures exist.

COCOMO

COCOMO (Constructive Cost Estimation Model) was proposed by Boehm [1981]. According to

Boehm, software cost estimation should be done through three stages: Basic COCOMO,

Intermediate COCOMO, and Complete COCOMO.

Basic COCOMO Model

The basic COCOMO model gives an approximate estimate of the project parameters. The basic

COCOMO estimation model is given by the following expressions:

Effort = a1 х (KLOC)a2 PM

Tdev = b1 x (Effort)b2 Months

Where

• KLOC is the estimated size of the software product expressed in Kilo Lines of Code,

• a1, a2, b1, b2 are constants for each category of software products,

• Tdev is the estimated time to develop the software, expressed in months,

• Effort is the total effort required to develop the software product, expressed in person months

(PMs).

The effort estimation is expressed in units of person-months (PM). It is the area under the

person-month plot (as shown in fig. 33.1). It should be carefully noted that an effort of 100 PM

does not imply that 100 persons should work for 1 month nor does it imply that 1 person should

be employed for 100 months, but it denotes the area under the person-month curve

According to Boehm, every line of source text should be calculated as one LOC irrespective of

the actual number of instructions on that line. Thus, if a single instruction spans several lines (say

n lines), it is considered to be nLOC. The values of a1, a2, b1, b2 for different categories of

products (i.e. organic, semidetached, and embedded) as given by Boehm [1981] are summarized

below. He derived the above expressions by examining historical data collected from a large

number of actual projects.

Estimation of development effort

For the three classes of software products, the formulas for estimating the effort based on the

code size are shown below:

Organic: Effort = 2.4(KLOC)1.05 PM

Semi-detached: Effort = 3.0(KLOC)1.12 PM

Embedded: Effort = 3.6(KLOC)1.20 PM

Estimation of development time

For the three classes of software products, the formulas for estimating the development time

based on the effort are given below:

Organic: Tdev = 2.5(Effort)0.38 Months

Semi-detached: Tdev = 2.5(Effort)0.35 Months

Embedded: Tdev = 2.5(Effort)0.32 Months

Some insight into the basic COCOMO model can be obtained by plotting the estimated

characteristics for different software sizes. Fig. 33.2 shows a plot of estimated effort versus

product size. From fig. 33.2, we can observe that the effort is somewhat super linear in the size

of the software product. Thus, the effort required to develop a product increases very rapidly

with project size.

The development time versus the product size in KLOC is plotted in fig. 33.3. From fig. 33.3, it

can be observed that the development time is a sub linear function of the size of the product, i.e.

when the size of the product increases by two times, the time to develop the product does not

double but rises moderately. This can be explained by the fact that for larger products, a larger

number of activities which can be carried out concurrently can be identified. The parallel

activities can be carried out simultaneously by the engineers. This reduces the time to complete

the project. Further, from fig. 33.3, it can be observed that the development time is roughly the

same for all the three categories of products. For example, a 60 KLOC program can be

developed in approximately 18 months, regardless of whether it is of organic, semidetached, or

embedded type.

CHAPTER 4

4. REQUIREMENTS ANALYSIS AND SPECIFICATION

Before we start to develop our software, it becomes quite essential for us to understand and

document the exact requirement of the customer. Experienced members of the development team

carry out this job. They are called as system analysts.

The analyst starts requirements gathering and analysis activity by collecting all information from

the customer which could be used to develop the requirements of the system. He then analyzes

the collected information to obtain a clear and thorough understanding of the product to be

developed, with a view to remove all ambiguities and inconsistencies from the initial customer

perception of the problem. The following basic questions pertaining to the project should be

clearly understood by the analyst in order to obtain a good grasp of the problem:

• What is the problem?

• Why is it important to solve the problem?

• What are the possible solutions to the problem?

• What exactly are the data input to the system and what exactly are the data output by the

system?

• What are the likely complexities that might arise while solving the problem?

• If there are external software or hardware with which the developed software has to interface,

then what exactly would the data interchange formats with the external system be?

After the analyst has understood the exact customer requirements, he proceeds to identify and

resolve the various requirements problems. The most important requirements problems that the

analyst has to identify and eliminate are the problems of anomalies, inconsistencies, and

incompleteness. When the analyst detects any inconsistencies, anomalies or incompleteness in

the gathered requirements, he resolves them by carrying out further discussions with the end-

users and the customers.

Parts of a SRS document

• The important parts of SRS document are:

Functional requirements of the system

Non-functional requirements of the system, and

Goals of implementation

4.1 FUNCTIONAL REQUIREMENTS:-

The functional requirements part discusses the functionalities required from the system. The

system is considered to perform a set of high-level functions {fi}. The functional view of the

system is shown in fig. Each function fi of the system can be considered as a transformation of a

set of input data (ii) to the corresponding set of output data (oi). The user can get some

meaningful piece of work done using a high-level function.

4.2 NONFUNCTIONAL REQUIREMENTS:-

Nonfunctional requirements deal with the characteristics of the system which cannot be

expressed as functions - such as the maintainability of the system, portability of the system,

usability of the system, etc.

4.3 GOALS OF IMPLEMENTATION:-

The goals of implementation part documents some general suggestions regarding development.

These suggestions guide trade-off among design goals. The goals of implementation section

might document issues such as revisions to the system functionalities that may be required in the

future, new devices to be supported in the future, reusability issues, etc. These are the items

which the developers might keep in their mind during development so that the developed system

may meet some aspects that are not required immediately.

4.4 IDENTIFYING FUNCTIONAL REQUIREMENTS FROM A PROBLEM

DESCRIPTION

The high-level functional requirements often need to be identified either from an informal

problem description document or from a conceptual understanding of the problem. Each high-

level requirement characterizes a way of system usage by some user to perform some meaningful

piece of work. There can be many types of users of a system and their requirements from the

system may be very different. So, it is often useful to identify the different types of users who

might use the system and then try to identify the requirements from each user’s perspective.

Example: - Consider the case of the library system, where –

F1: Search Book function

Input: an author’s name

Output: details of the author’s books and the location of these books in the library

So the function Search Book (F1) takes the author's name and transforms it into book details.

Functional requirements actually describe a set of high-level requirements, where each high-level

requirement takes some data from the user and provides some data to the user as an output. Also

each high-level requirement might consist of several other functions.

Documenting functional requirements

For documenting the functional requirements, we need to specify the set of functionalities

supported by the system. A function can be specified by identifying the state at which the data is

to be input to the system, its input data domain, the output data domain, and the type of

processing to be carried on the input data to obtain the output data. Let us first try to document

the withdraw-cash function of an ATM (Automated Teller Machine) system. The withdraw-cash

is a high-level requirement. It has several sub-requirements corresponding to the different user

interactions. These different interaction sequences capture the different scenarios.

Example: - Withdraw Cash from ATM

R1: withdraw cash

Description: The withdraw cash function first determines the type of account that the user has

and the account number from which the user wishes to withdraw cash. It checks the balance to

determine whether the requested amount is available in the account. If enough balance is

available, it outputs the required cash; otherwise it generates an error message.

R1.1 select withdraw amount option

Input: “withdraw amount” option

Output: user prompted to enter the account type

R1.2: select account type

Input: user option

Output: prompt to enter amount

R1.3: get required amount

Input: amount to be withdrawn in integer values greater than 100 and less than 10,000 in

multiples of 100.

Output: The requested cash and printed transaction statement.

Processing: the amount is debited from the user’s account if sufficient balance is available,

otherwise an error message displayed

4.5 PROPERTIES OF A GOOD SRS DOCUMENT

The important properties of a good SRS document are the following:

 Concise. The SRS document should be concise and at the same time unambiguous,

consistent, and complete. Verbose and irrelevant descriptions reduce readability and also

increase error possibilities.

 Structured. It should be well-structured. A well-structured document is easy to

understand and modify. In practice, the SRS document undergoes several revisions to

cope up with the customer requirements. Often, the customer requirements evolve over a

period of time. Therefore, in order to make the modifications to the SRS document easy,

it is important to make the document well-structured.

 Black-box view. It should only specify what the system should do and refrain from

stating how to do these. This means that the SRS document should specify the external

behavior of the system and not discuss the implementation issues. The SRS document

should view the system to be developed as black box, and should specify the externally

visible behavior of the system. For this reason, the SRS document is also called the

black-box specification of a system.

 Conceptual integrity. It should show conceptual integrity so that the reader can easily

understand it.

 Response to undesired events. It should characterize acceptable responses to undesired

events. These are called system response to exceptional conditions.

 Verifiable. All requirements of the system as documented in the SRS document should be

verifiable. This means that it should be possible to determine whether or not requirements

have been met in an implementation.

4.6 PROBLEMS WITHOUT A SRS DOCUMENT

The important problems that an organization would face if it does not develop a SRS document

are as follows:

 Without developing the SRS document, the system would not be implemented according

to customer needs.

 Software developers would not know whether what they are developing is what exactly

required by the customer.

 Without SRS document, it will be very much difficult for the maintenance engineers to

understand the functionality of the system.

 It will be very much difficult for user document writers to write the users’ manuals

properly without understanding the SRS document.

4.7 PROBLEMS WITH AN UNSTRUCTURED SPECIFICATION

 It would be very much difficult to understand that document.

 It would be very much difficult to modify that document.

 Conceptual integrity in that document would not be shown.

 The SRS document might be unambiguous and inconsistent.

CHAPTER 5

5.SOFTWARE DESIGN

Software design is a process to transform user requirements into some suitable form, which helps

the programmer in software coding and implementation.

For assessing user requirements, an SRS (Software Requirement Specification) document is

created whereas for coding and implementation, there is a need of more specific and detailed

requirements in software terms. The output of this process can directly be used into

implementation in programming languages.

Software design is the first step in SDLC (Software Design Life Cycle), which moves the

concentration from problem domain to solution domain. It tries to specify how to fulfill the

requirements mentioned in SRS.

Software Design Levels

Software design yields three levels of results:

 Architectural Design - The architectural design is the highest abstract version of the

system. It identifies the software as a system with many components interacting with

each other. At this level, the designers get the idea of proposed solution domain.

 High-level Design- The high-level design breaks the ‘single entity-multiple component’

concept of architectural design into less-abstracted view of sub-systems and modules and

depicts their interaction with each other. High-level design focuses on how the system

along with all of its components can be implemented in forms of modules. It recognizes

modular structure of each sub-system and their relation and interaction among each other.

 Detailed Design- Detailed design deals with the implementation part of what is seen as a

system and its sub-systems in the previous two designs. It is more detailed towards

modules and their implementations. It defines logical structure of each module and their

interfaces to communicate with other modules.

5.1 MODULARIZATION

Modularization is a technique to divide a software system into multiple discrete and independent

modules, which are expected to be capable of carrying out task(s) independently. These modules

may work as basic constructs for the entire software. Designers tend to design modules such that

they can be executed and/or compiled separately and independently.

Modular design unintentionally follows the rules of ‘divide and conquer’ problem-solving

strategy this is because there are many other benefits attached with the modular design of a

software.

Advantage of modularization:

 Smaller components are easier to maintain

 Program can be divided based on functional aspects

 Desired level of abstraction ca n be brought in the program

 Components with high cohesion can be re-used again.

 Concurrent execution can be made possible

 Desired from security aspect

5.2 CONCURRENCY

Back in time, all software’s were meant to be executed sequentially. By sequential execution we

mean that the coded instruction will be executed one after another implying only one portion of

program being activated at any given time. Say, software has multiple modules, and then only

one of all the modules can be found active at any time of execution.

In software design, concurrency is implemented by splitting the software into multiple

independent units of execution, like modules and executing them in parallel. In other words,

concurrency provides capability to the software to execute more than one part of code in parallel

to each other.

It is necessary for the programmers and designers to recognize those modules, which can be

made parallel execution.

Example

The spell check feature in word processor is a module of software, which runs alongside the

word processor itself.

5.3 COUPLING AND COHESION

When a software program is modularized, its tasks are divided into several modules based on

some characteristics. As we know, modules are set of instructions put together in order to

achieve some tasks. They are though, considered as single entity but may refer to each other to

work together. There are measures by which the quality of a design of modules and their

interaction among them can be measured. These measures are called coupling and cohesion.

Cohesion

Cohesion is a measure that defines the degree of intra-dependability within elements of a

module. The greater the cohesion, the better is the program design.

There are seven types of cohesion, namely –

 Co-incidental cohesion - It is unplanned and random cohesion, which might be the result

of breaking the program into smaller modules for the sake of modularization. Because it

is unplanned, it may serve confusion to the programmers and is generally not-accepted.

 Logical cohesion - When logically categorized elements are put together into a module, it

is called logical cohesion.

 Temporal Cohesion - When elements of module are organized such that they are

processed at a similar point in time, it is called temporal cohesion.

 Procedural cohesion - When elements of module are grouped together, which are

executed sequentially in order to perform a task, it is called procedural cohesion.

 Communicational cohesion - When elements of module are grouped together, which are

executed sequentially and work on same data (information), it is called communicational

cohesion.

 Sequential cohesion - When elements of module are grouped because the output of one

element serves as input to another and so on, it is called sequential cohesion.

 Functional cohesion - It is considered to be the highest degree of cohesion, and it is

highly expected. Elements of module in functional cohesion are grouped because they all

contribute to a single well-defined function. It can also be reused.

Coupling

Coupling is a measure that defines the level of inter-dependability among modules of a program.

It tells at what level the modules interfere and interact with each other. The lower the coupling,

the better the program.

There are five levels of coupling, namely -

 Content coupling - When a module can directly access or modify or refer to the content

of another module, it is called content level coupling.

 Common coupling- When multiple modules have read and write access to some global

data, it is called common or global coupling.

 Control coupling- Two modules are called control-coupled if one of them decides the

function of the other module or changes its flow of execution.

 Stamp coupling- When multiple modules share common data structure and work on

different part of it, it is called stamp coupling.

 Data coupling- Data coupling is when two modules interact with each other by means of

passing data (as parameter). If a module passes data structure as parameter, then the

receiving module should use all its components.

Ideally, no coupling is considered to be the best.

5.4 SOFTWARE DESIGN STRATEGIES

Software design is a process to conceptualize the software requirements into software

implementation. Software design takes the user requirements as challenges and tries to find

optimum solution. While the software is being conceptualized, a plan is chalked out to find the

best possible design for implementing the intended solution.

There are multiple variants of software design. Let us study them briefly:

Software design is a process to conceptualize the software requirements into software

implementation. Software design takes the user requirements as challenges and tries to find

optimum solution. While the software is being conceptualized, a plan is chalked out to find the

best possible design for implementing the intended solution.

There are multiple variants of software design. Let us study them briefly:

5.4.1 Structured Design

Structured design is a conceptualization of problem into several well-organized elements of

solution. It is basically concerned with the solution design. Benefit of structured design is, it

gives better understanding of how the problem is being solved. Structured design also makes it

simpler for designer to concentrate on the problem more accurately.

Structured design is mostly based on ‘divide and conquer’ strategy where a problem is broken

into several small problems and each small problem is individually solved until the whole

problem is solved.

The small pieces of problem are solved by means of solution modules. Structured design

emphasis that these modules be well organized in order to achieve precise solution.

These modules are arranged in hierarchy. They communicate with each other. A good structured

design always follows some rules for communication among multiple modules, namely -

Cohesion - grouping of all functionally related elements.

Coupling - communication between different modules.

A good structured design has high cohesion and low coupling arrangements.

5.4.2 Function Oriented Design

In function-oriented design, the system is comprised of many smaller sub-systems known as

functions. These functions are capable of performing significant task in the system. The system

is considered as top view of all functions.

Function oriented design inherits some properties of structured design where divide and conquer

methodology is used.

This design mechanism divides the whole system into smaller functions, which provides means

of abstraction by concealing the information and their operation. These functional modules can

share information among themselves by means of information passing and using information

available globally.

Another characteristic of functions is that when a program calls a function, the function changes

the state of the program, which sometimes is not acceptable by other modules. Function oriented

design works well where the system state does not matter and program/functions work on input

rather than on a state.

Design Process

 The whole system is seen as how data flows in the system by means of data flow

diagram.

 DFD depicts how functions change the data and state of entire system.

 The entire system is logically broken down into smaller units known as functions on the

basis of their operation in the system.

 Each function is then described at large.

5.4.3 Object Oriented Design

Object oriented design works around the entities and their characteristics instead of functions

involved in the software system. This design strategy focuses on entities and its characteristics.

The whole concept of software solution revolves around the engaged entities.

Let us see the important concepts of Object Oriented Design:

 Objects - All entities involved in the solution design are known as objects. For example,

person, banks, company and customers are treated as objects. Every entity has some

attributes associated to it and has some methods to perform on the attributes.

 Classes - A class is a generalized description of an object. An object is an instance of a

class. Class defines all the attributes, which an object can have and methods, which

defines the functionality of the object. In the solution design, attributes are stored as

variables and functionalities are defined by means of methods or procedures.

 Encapsulation - In OOD, the attributes (data variables) and methods (operation on the

data) are bundled together is called encapsulation. Encapsulation not only bundles

important information of an object together, but also restricts access of the data and

methods from the outside world. This is called information hiding.

 Inheritance - OOD allows similar classes to stack up in hierarchical manner where the

lower or sub-classes can import, implement and re-use allowed variables and methods

from their immediate super classes. This property of OOD is known as inheritance. This

makes it easier to define specific class and to create generalized classes from specific

ones.

 Polymorphism - OOD languages provide a mechanism where methods performing

similar tasks but vary in arguments, can be assigned same name. This is called

polymorphism, which allows a single interface performing tasks for different types.

Depending upon how the function is invoked, respective portion of the code gets

executed.

Design Process

Software design process can be perceived as series of well-defined steps. Though it varies

according to design approach (function oriented or object oriented, yet It may have the following

steps involved:

 A solution design is created from requirement or previous used system and/or system

sequence diagram.

 Objects are identified and grouped into classes on behalf of similarity in attribute

characteristics.

 Class hierarchy and relation among them are defined.

 Application framework is defined.

5.5 SOFTWARE ANALYSIS & DESIGN TOOLS

Software analysis and design includes all activities, which help the transformation of

requirement specification into implementation. Requirement specifications specify all functional

and non-functional expectations from the software. These requirement specifications come in the

shape of human readable and understandable documents, to which a computer has nothing to do.

Software analysis and design is the intermediate stage, which helps human-readable

requirements to be transformed into actual code.

Let us see few analysis and design tools used by software designers:

5.5.1 Data Flow Diagram

Data flow diagram is a graphical representation of data flow in an information system. It is

capable of depicting incoming data flow, outgoing data flow and stored data. The DFD does not

mention anything about how data flows through the system.

There is a prominent difference between DFD and Flowchart. The flowchart depicts flow of

control in program modules. DFDs depict flow of data in the system at various levels. DFD does

not contain any control or branch elements.

Types of DFD

Data Flow Diagrams are either Logical or Physical.

 Logical DFD - This type of DFD concentrates on the system process and flow of data in

the system. For example in a Banking software system, how data is moved between

different entities.

 Physical DFD - This type of DFD shows how the data flow is actually implemented in

the system. It is more specific and close to the implementation.

DFD Components

DFD can represent Source, destination, storage and flow of data using the following set of

components -

 Entities - Entities are source and destination of information data. Entities are represented

by rectangles with their respective names.

 Process - Activities and action taken on the data are represented by Circle or Round-

edged rectangles.

 Data Storage - There are two variants of data storage - it can either be represented as a

rectangle with absence of both smaller sides or as an open-sided rectangle with only one

side missing.

 Data Flow - Movement of data is shown by pointed arrows. Data movement is shown

from the base of arrow as its source towards head of the arrow as destination.

5.5.2 Importance of DFDs in a good software design

The main reason why the DFD technique is so popular is probably because of the fact that DFD

is a very simple formalism – it is simple to understand and use. Starting with a set of high-level

functions that a system performs, a DFD model hierarchically represents various sub-functions.

In fact, any hierarchical model is simple to understand. Human mind is such that it can easily

understand any hierarchical model of a system – because in a hierarchical model, starting with a

very simple and abstract model of a system, different details of the system are slowly introduced

through different hierarchies. The data flow diagramming technique also follows a very simple

set of intuitive concepts and rules. DFD is an elegant modeling technique that turns out to be

useful not only to represent the results of structured analysis of a software problem, but also for

several other applications such as showing the flow of documents or items in an organization.

CHAPTER 6

6. CODING

Coding- The objective of the coding phase is to transform the design of a system into code in a

high level language and then to unit test this code. The programmers adhere to standard and well

defined style of coding which they call their coding standard. The main advantages of adhering

to a standard style of coding are as follows:

 A coding standard gives uniform appearances to the code written by different engineers

 It facilitates code of understanding.

 Promotes good programming practices.

For implementing our design into a code, we require a good high level language. A programming

language should have the following features:

6.1 Characteristics of a Programming Language

 Readability: A good high-level language will allow programs to be written in some ways

that resemble a quite-English description of the underlying algorithms. If care is taken,

the coding may be done in a way that is essentially self-documenting.

 Portability: High-level languages, being essentially machine independent, should be able

to develop portable software.

 Generality: Most high-level languages allow the writing of a wide variety of programs,

thus relieving the programmer of the need to become expert in many diverse languages.

 Brevity: Language should have the ability to implement the algorithm with less amount

of code. Programs expressed in high-level languages are often considerably shorter than

their low-level equivalents.

 Error checking: Being human, a programmer is likely to make many mistakes in the

development of a computer program. Many high-level languages enforce a great deal of

error checking both at compile-time and at run-time.

 Cost: The ultimate cost of a programming language is a function of many of its

characteristics.

 Familiar notation: A language should have familiar notation, so it can be understood by

most of the programmers.

 Quick translation: It should admit quick translation.

 Efficiency: It should permit the generation of efficient object code.

 Modularity: It is desirable that programs can be developed in the language as a collection

of separately compiled modules, with appropriate mechanisms for ensuring self-

consistency between these modules.

 Widely available: Language should be widely available and it should be possible to

provide translators for all the major machines and for all the major operating systems.

A coding standard lists several rules to be followed during coding, such as the way variables are

to be named, the way the code is to be laid out, error return conventions, etc.

6.2 Coding standards and guidelines

Good software development organizations usually develop their own coding standards and

guidelines depending on what best suits their organization and the type of products they develop.

The following are some representative coding standards.

1. Rules for limiting the use of global: These rules list what types of data can be declared global

and what cannot.

2. Contents of the headers preceding codes for different modules: The information contained in

the headers of different modules should be standard for an organization. The exact format in

which the header information is organized in the header can also be specified. The following are

some standard header data:

• Name of the module.

• Date on which the module was created.

• Author’s name.

• Modification history.

• Synopsis of the module.

• Different functions supported, along with their input/output parameters.

• Global variables accessed/modified by the module.

3. Naming conventions for global variables, local variables, and constant identifiers: A possible

naming convention can be that global variable names always start with a capital letter, local

variable names are made of small letters, and constant names are always capital letters.

4. Error return conventions and exception handling mechanisms: The way error conditions are

reported by different functions in a program are handled should be standard within an

organization. For example, different functions while encountering an error condition should

either return a 0 or 1 consistently.

The following are some representative coding guidelines recommended by many software

development organizations.

1. Do not use a coding style that is too clever or too difficult to understand: Code should be easy

to understand. Many inexperienced engineers actually take pride in writing cryptic and

incomprehensible code. Clever coding can obscure meaning of the code and hamper

understanding. It also makes maintenance difficult.

2. Avoid obscure side effects: The side effects of a function call include modification of

parameters passed by reference, modification of global variables, and I/O operations. An obscure

side effect is one that is not obvious from a casual examination of the code. Obscure side effects

make it difficult to understand a piece of code. For example, if a global variable is changed

obscurely in a called module or some file I/O is performed which is difficult to infer from the

function’s name and header information, it becomes difficult for anybody trying to understand

the code.

3. Do not use an identifier for multiple purposes: Programmers often use the same identifier to

denote several temporary entities. For example, some programmers use a temporary loop

variable for computing and a storing the final result. The rationale that is usually given by these

programmers for such multiple uses of variables is memory efficiency, e.g. three variables use up

three memory locations, whereas the same variable used in three different ways uses just one

memory location. However, there are several things wrong with this approach and hence should

be avoided. Some of the problems caused by use of variables for multiple purposes as follows:

Each variable should be given a descriptive name indicating its purpose. This is not possible if an

identifier is used for multiple purposes. Use of a variable for multiple purposes can lead to

confusion and make it difficult for somebody trying to read and understand the code.

 Use of variables for multiple purposes usually makes future enhancements more difficult.

4. The code should be well-documented: As a rule of thumb, there must be at least one comment

line on the average for every three-source line.

5. The length of any function should not exceed 10 source lines: A function that is very lengthy

is usually very difficult to understand as it probably carries out many different functions. For the

same reason, lengthy functions are likely to have disproportionately larger number of bugs.

6. Do not use goto statements: Use of goto statements makes a program unstructured and very

difficult to understand.

Code Review

Code review for a model is carried out after the module is successfully compiled and the all the

syntax errors have been eliminated. Code reviews are extremely cost-effective strategies for

reduction in coding errors and to produce high quality code. Normally, two types of reviews are

carried out on the code of a module. These two types code review techniques are code inspection

and code walk through.

Code Walk Throughs

Code walk through is an informal code analysis technique. In this technique, after a module has

been coded, successfully compiled and all syntax errors eliminated. A few members of the

development team are given the code few days before the walk through meeting to read and

understand code. Each member selects some test cases and simulates execution of the code by

hand (i.e. trace execution through each statement and function execution). The main objectives

of the walk through are to discover the algorithmic and logical errors in the code. The members

note down their findings to discuss these in a walk through meeting where the coder of the

module is present. Even though a code walk through is an informal analysis technique, several

guidelines have evolved over the years for making this naïve but useful analysis technique more

effective. Of course, these guidelines are based on personal experience, common sense, and

several subjective factors. Therefore, these guidelines should be considered as examples rather

than accepted as rules to be applied dogmatically. Some of these guidelines are the following:

 The team performing code walk through should not be either too big or too small. Ideally, it

should consist of between three to seven members.

 Discussion should focus on discovery of errors and not on how to fix the discovered errors.

 In order to foster cooperation and to avoid the feeling among engineers that they are being

evaluated in the code walk through meeting, managers should not attend the walk through

meetings.

Code Inspection

In contrast to code walk through, the aim of code inspection is to discover some common types

of errors caused due to oversight and improper programming. In other words, during code

inspection the code is examined for the presence of certain kinds of errors, in contrast to the hand

simulation of code execution done in code walk throughs. For instance, consider the classical

error of writing a procedure that modifies a formal parameter while the calling routine calls that

procedure with a constant actual parameter. It is more likely that such an error will be discovered

by looking for these kinds of mistakes in the code, rather than by simply hand simulating

execution of the procedure. In addition to the commonly made errors, adherence to coding

standards is also checked during code inspection. Good software development companies collect

statistics regarding different types of errors commonly committed by their engineers and identify

the type of errors most frequently committed. Such a list of commonly committed errors can be

used during code inspection to look out for possible errors.

Following is a list of some classical programming errors which can be checked during code

inspection:

 Use of uninitialized variables.

 Jumps into loops.

 Nonterminating loops.

 Incompatible assignments.

 Array indices out of bounds.

 Improper storage allocation and deallocation.

 Mismatches between actual and formal parameter in procedure calls.

 Use of incorrect logical operators or incorrect precedence among operators.

 Improper modification of loop variables.

 Comparison of equally of floating point variables, etc.

Clean Room Testing

Clean room testing was pioneered by IBM. This type of testing relies heavily on walk throughs,

inspection, and formal verification. The programmers are not allowed to test any of their code by

executing the code other than doing some syntax testing using a compiler. The software

development philosophy is based on avoiding software defects by using a rigorous inspection

process. The objective of this software is zero-defect software. The name ‘clean room’ was

derived from the analogy with semi-conductor fabrication units. In these units (clean rooms),

defects are avoided by manufacturing in ultra-clean atmosphere. In this kind of development,

inspections to check the consistency of the components with their specifications has replaced

unit-testing.

This technique reportedly produces documentation and code that is more reliable and

maintainable than other development methods relying heavily on code execution-based testing.

The clean room approach to software development is based on five characteristics:

 Formal specification: The software to be developed is formally specified. A state-transition

model which shows system responses to stimuli is used to express the specification.

 Incremental development: The software is partitioned into increments which are developed

and validated separately using the clean room process. These increments are specified, with

customer input, at an early stage in the process.

 Structured programming: Only a limited number of control and data abstraction constructs are

used. The program development process is process of stepwise refinement of the specification.

 Static verification: The developed software is statically verified using rigorous software

inspections. There is no unit or module testing process for code components

 Statistical testing of the system: The integrated software increment is tested statistically to

determine its reliability. These statistical tests are based on the operational profile which is

developed in parallel with the system specification. The main problem with this approach is that

testing effort is increased as walk through, inspection, and verification are time-consuming.

6.3 Software Documentation

When various kinds of software products are developed then not only the executable files and the

source code are developed but also various kinds of documents such as users’ manual, software

requirements specification (SRS) documents, design documents, test documents, installation

manual, etc are also developed as part of any software engineering process. All these documents

are a vital part of good software development practice. Good documents are very useful and

server the following purposes:

 Good documents enhance understandability and maintainability of a software product.

They reduce the effort and time required for maintenance.

 Use documents help the users in effectively using the system.

 Good documents help in effectively handling the manpower turnover problem. Even

when an engineer leaves the organization, and a new engineer comes in, he can build up

the required knowledge easily.

 Production of good documents helps the manager in effectively tracking the progress of

the project. The project manager knows that measurable progress is achieved if a piece of

work is done and the required documents have been produced and reviewed.

Different types of software documents can broadly be classified into the following:

• Internal documentation

• External documentation

Internal documentation is the code comprehension features provided as part of the source code

itself. Internal documentation is provided through appropriate module headers and comments

embedded in the source code. Internal documentation is also provided through the useful variable

names, module and function headers, code indentation, code structuring, use of enumerated types

and constant identifiers, use of user-defined data types, etc. Careful experiments suggest that out

of all types of internal documentation meaningful variable names is most useful in understanding

the code. This is of course in contrast to the common expectation that code commenting would

be the most useful. The research finding is obviously true when comments are written without

thought. For example, the following style of code commenting does not in any way help in

understanding the code.

a = 10; /* a made 10 */

But even when code is carefully commented, meaningful variable names still are more helpful in

understanding a piece of code. Good software development organizations usually ensure good

internal documentation by appropriately formulating their coding standards and coding

guidelines.

External documentation is provided through various types of supporting documents such as

users’ manual, software requirements specification document, design document, test documents,

etc. A systematic software development style ensures that all these documents are produced in an

orderly fashion.

6.4 TESTING

Testing a program consists of providing the program with a set of test inputs (or test cases) and

observing if the program behaves as expected. If the program fails to behave as expected, then

the conditions under which failure occurs are noted for later debugging and correction.

Some commonly used terms associated with testing are:

 Failure: This is a manifestation of an error (or defect or bug). But, the mere presence of

an error may not necessarily lead to a failure.

 Test case: This is the triplet [I,S,O], where I is the data input to the system, S is the state

of the system at which the data is input, and O is the expected output of the system.

 Test suite: This is the set of all test cases with which a given software product is to be

tested.

Aim of Testing

The aim of the testing process is to identify all defects existing in a software product. However

for most practical systems, even after satisfactorily carrying out the testing phase, it is not

possible to guarantee that the software is error free. This is because of the fact that the input data

domain of most software products is very large. It is not practical to test the software

exhaustively with respect to each value that the input data may assume. Even with this practical

limitation of the testing process, the importance of testing should not be underestimated. It must

be remembered that testing does expose many defects existing in a software product. Thus

testing provides a practical way of reducing defects in a system and increasing the users’

confidence in a developed system.

6.5 Verification Vs Validation

Verification is the process of determining whether the output of one phase of software

development conforms to that of its previous phase, whereas validation is the process of

determining whether a fully developed system conforms to its requirements specification. Thus

while verification is concerned with phase containment of errors, the aim of validation is that the

final product be error free.

Design of Test Cases

Exhaustive testing of almost any non-trivial system is impractical due to the fact that the domain

of input data values to most practical software systems is either extremely large or infinite.

Therefore, we must design an optional test suite that is of reasonable size and can uncover as

many errors existing in the system as possible. Actually, if test cases are selected randomly,

many of these randomly selected test cases do not contribute to the significance of the test suite,

i.e. they do not detect any additional defects not already being detected by other test cases in the

suite. Thus, the number of random test cases in a test suite is, in general, not an indication of the

effectiveness of the testing. In other words, testing a system using a large collection of test cases

that are selected at random does not guarantee that all (or even most) of the errors in the system

will be uncovered. Consider the following example code segment which finds the greater of two

integer values x and y. This code segment has a simple programming error.

if (x>y)

max = x;

else

max = x;

For the above code segment, the test suite, {(x=3,y=2);(x=2,y=3)} can detect the error, whereas a

larger test suite {(x=3,y=2);(x=4,y=3);(x=5,y=1)} does not detect the error. So, it would be

incorrect to say that a larger test suite would always detect more errors than a smaller one, unless

of course the larger test suite has also been carefully designed. This implies that the test suite

should be carefully designed than picked randomly. Therefore, systematic approaches should be

followed to design an optimal test suite. In an optimal test suite, each test case is designed to

detect different errors.

Functional Testing Vs. Structural Testing

In the black-box testing approach, test cases are designed using only the functional specification

of the software, i.e. without any knowledge of the internal structure of the software. For this

reason, black-box testing is known as functional testing. On the other hand, in the white-box

testing approach, designing test cases requires thorough knowledge about the internal structure

of software, and therefore the white-box testing is called structural testing.

6.6 BLACK-BOX TESTING

Testing in the large vs. testing in the small

Software products are normally tested first at the individual component (or unit) level. This is

referred to as testing in the small. After testing all the components individually, the components

are slowly integrated and tested at each level of integration (integration testing). Finally, the fully

integrated system is tested (called system testing). Integration and system testing are known as

testing in the large.

Unit Testing

Unit testing is undertaken after a module has been coded and successfully reviewed. Unit testing

(or module testing) is the testing of different units (or modules) of a system in isolation.

In order to test a single module, a complete environment is needed to provide all that is necessary

for execution of the module. That is, besides the module under test itself, the following steps are

needed in order to be able to test the module:

• The procedures belonging to other modules that the module under test calls.

• Nonlocal data structures that the module accesses.

• A procedure to call the functions of the module under test with appropriate parameters.

Modules are required to provide the necessary environment (which either call or are called by the

module under test) is usually not available until they too have been unit tested, stubs and drivers

are designed to provide the complete environment for a module. The role of stub and driver

modules is pictorially shown in fig. 19.1. A stub procedure is a dummy procedure that has the

same I/O parameters as the given procedure but has a highly simplified behavior. For example, a

stub procedure may produce the expected behavior using a simple table lookup mechanism. A

driver module contains the nonlocal data structures accessed by the module under test, and

would also have the code to call the different functions of the module with appropriate parameter

values.

Black Box Testing

In the black-box testing, test cases are designed from an examination of the input/output values

only and no knowledge of design or code is required. The following are the two main approaches

to designing black box test cases.

• Equivalence class portioning

• Boundary value analysis

Equivalence Class Partitioning

In this approach, the domain of input values to a program is partitioned into a set of equivalence

classes. This partitioning is done such that the behavior of the program is similar for every input

data belonging to the same equivalence class. The main idea behind defining the equivalence

classes is that testing the code with any one value belonging to an equivalence class is as good as

testing the software with any other value belonging to that equivalence class. Equivalence classes

for a software can be designed by examining the input data and output data. The following are

some general guidelines for designing the equivalence classes:

1. If the input data values to a system can be specified by a range of values, then one valid and

two invalid equivalence classes should be defined.

2. If the input data assumes values from a set of discrete members of some domain, then one

equivalence class for valid input values and another equivalence class for invalid input values

should be defined.

6.7 WHITE-BOX TESTING

One white-box testing strategy is said to be stronger than another strategy, if all types of errors

detected by the first testing strategy is also detected by the second testing strategy, and the

second testing strategy additionally detects some more types of errors. When two testing

strategies detect errors that are different at least with respect to some types of errors, then they

are called complementary.

Statement Coverage

The statement coverage strategy aims to design test cases so that every statement in a program is

executed at least once. The principal idea governing the statement coverage strategy is that

unless a statement is executed, it is very hard to determine if an error exists in that statement.

Unless a statement is executed, it is very difficult to observe whether it causes failure due to

some illegal memory access, wrong result computation, etc. However, executing some statement

once and observing that it behaves properly for that input value is no guarantee that it will

behave correctly for all input values. In the following, designing of test cases using the statement

coverage strategy have been shown.

Example: Consider the Euclid’s GCD computation algorithm:

int compute_gcd(x, y)

int x, y;

{

1 while (x! = y)

{

2 if (x>y) then

3 x= x – y;

4 else y= y – x;

5 }

6 return x;

}

By choosing the test set {(x=3, y=3), (x=4, y=3), (x=3, y=4)}, we can exercise the program such

that all statements are executed at least once.

Branch Coverage

In the branch coverage-based testing strategy, test cases are designed to make each branch

condition to assume true and false values in turn. Branch testing is also known as edge testing as

in this testing scheme, each edge of a program’s control flow graph is traversed at least once.

It is obvious that branch testing guarantees statement coverage and thus is a stronger testing

strategy compared to the statement coverage-based testing. For Euclid’s GCD computation

algorithm, the test cases for branch coverage can be {(x=3, y=3), (x=3, y=2), (x=4, y=3), (x=3,

y=4)}.

Condition Coverage

In this structural testing, test cases are designed to make each component of a composite

conditional expression to assume both true and false values. For example, in the conditional

expression ((c1.and.c2).or.c3), the components c1, c2 and c3 are each made to assume both true

and false values. Branch testing is probably the simplest condition testing strategy where only

the compound conditions appearing in the different branch statements are made to assume the

true and false values. Thus, condition testing is a stronger testing strategy than branch testing and

branch testing is stronger testing strategy than the statement coverage-based testing. For a

composite conditional expression of n components, for condition coverage, 2ⁿ test cases are

required. Thus, for condition coverage, the number of test cases increases exponentially with the

number of component conditions. Therefore, a condition coverage-based testing technique is

practical only if n (the number of conditions) is small.

Path Coverage

The path coverage-based testing strategy requires us to design test cases such that all linearly

independent paths in the program are executed at least once. A linearly independent path can be

defined in terms of the control flow graph (CFG) of a program.

Control Flow Graph (CFG)

A control flow graph describes the sequence in which the different instructions of a program get

executed. In other words, a control flow graph describes how the control flows through the

program. In order to draw the control flow graph of a program, all the statements of a program

must be numbered first. The different numbered statements serve as nodes of the control flow

graph (as shown in fig. 20.2). An edge from one node to another node exists if the execution of

the statement representing the first node can result in the transfer of control to the other node.

The CFG for any program can be easily drawn by knowing how to represent the sequence,

selection, and iteration type of statements in the CFG. After all, a program is made up from these

types of statements. Fig. 20.2 summarizes how the CFG for these three types of statements can

be drawn. It is important to note that for the iteration type of constructs such as the while

construct, the loop condition is tested only at the beginning of the loop and therefore the control

flow from the last statement of the loop is always to the top of the loop. Using these basic ideas,

the CFG of Euclid’s GCD computation algorithm can be drawn as shown in fig. 20.3.

Sequence:

a=5;

b = a*2-1;

Selection:

if (a>b)

c = 3;

else

c =5;

c=c*c;

Iteration :

while (a>b)

{

b=b -1;

b=b*a;

}

c = a+b;

6.8 DEBUGGING, INTEGRATION AND SYSTEM TESTING

Once errors are identified in a program code, it is necessary to first identify the precise program

statements responsible for the errors and then to fix them. Identifying errors in a program code

and then fix those up are known as debugging.

Debugging Approaches

The following are some of the approaches popularly adopted by programmers for debugging.

Brute Force Method:

This is the most common method of debugging but is the least efficient method. In this approach,

the program is loaded with print statements to print the intermediate values with the hope that

some of the printed values will help to identify the statement in error. This approach becomes

more systematic with the use of a symbolic debugger (also called a source code debugger),

because values of different variables can be easily checked and break points and watch points

can be easily set to test the values of variables effortlessly.

Backtracking:

This is also a fairly common approach. In this approach, beginning from the statement at which

an error symptom has been observed, the source code is traced backwards until the error is

discovered. Unfortunately, as the number of source lines to be traced back increases, the number

of potential backward paths increases and may become unmanageably large thus limiting the use

of this approach.

Cause Elimination Method:

In this approach, a list of causes which could possibly have contributed to the error symptom is

developed and tests are conducted to eliminate each. A related technique of identification of the

error from the error symptom is the software fault tree analysis.

Program Slicing:

This technique is similar to back tracking. Here the search space is reduced by defining slices. A

slice of a program for a particular variable at a particular statement is the set of source lines

preceding this statement that can influence the value of that variable.

Debugging Guidelines

Debugging is often carried out by programmers based on their ingenuity. The following are some

general guidelines for effective debugging:

 Many times debugging requires a thorough understanding of the program design. Trying

to debug based on a partial understanding of the system design and implementation may

require an inordinate amount of effort to be put into debugging even simple problems.

 Debugging may sometimes even require full redesign of the system. In such cases, a

common mistake that novice programmers often make is attempting not to fix the error

but its symptoms.

 One must be beware of the possibility that an error correction may introduce new errors.

Therefore after every round of error-fixing, regression testing must be carried out.

Program Analysis Tools

A program analysis tool means an automated tool that takes the source code or the executable

code of a program as input and produces reports regarding several important characteristics of

the program, such as its size, complexity, adequacy of commenting, adherence to programming

standards, etc. We can classify these into two broad categories of program analysis tools:

 Static Analysis tools

 Dynamic Analysis tools

 Static program analysis tools

Static Analysis Tool is also a program analysis tool. It assesses and computes various

characteristics of a software product without executing it. Typically, static analysis tools analyze

some structural representation of a program to arrive at certain analytical conclusions, e.g. that

some structural properties hold. The structural properties that are usually analyzed are:

 Whether the coding standards have been adhered to?

 Certain programming errors such as uninitialized variables and mismatch between actual and

formal parameters, variables that are declared but never used are also checked.

Code walk throughs and code inspections might be considered as static analysis methods. But,

the term static program analysis is used to denote automated analysis tools. So, a compiler can be

considered to be a static program analysis tool.

Dynamic program analysis tools - Dynamic program analysis techniques require the program to

be executed and its actual behavior recorded. A dynamic analyzer usually instruments the code

(i.e. adds additional statements in the source code to collect program execution traces). The

instrumented code when executed allows us to record the behavior of the software for different

test cases. After the software has been tested with its full test suite and its behavior recorded, the

dynamic analysis tool caries out a post execution analysis and produces reports which describe

the structural coverage that has been achieved by the complete test suite for the program. For

example, the post execution dynamic analysis report might provide data on extent statement,

branch and path coverage achieved.

Normally the dynamic analysis results are reported in the form of a histogram or a pie chart to

describe the structural coverage achieved for different modules of the program. The output of a

dynamic analysis tool can be stored and printed easily and provides evidence that thorough

testing has been done. The dynamic analysis results the extent of testing performed in white-box

mode. If the testing coverage is not satisfactory more test cases can be designed and added to the

test suite. Further, dynamic analysis results can help to eliminate redundant test cases from the

test suite.

6.9 INTEGRATION TESTING

The primary objective of integration testing is to test the module interfaces, i.e. there are no

errors in the parameter passing, when one module invokes another module. During integration

testing, different modules of a system are integrated in a planned manner using an integration

plan. The integration plan specifies the steps and the order in which modules are combined to

realize the full system. After each integration step, the partially integrated system is tested. An

important factor that guides the integration plan is the module dependency graph. The structure

chart (or module dependency graph) denotes the order in which different modules call each

other. By examining the structure chart the integration plan can be developed.

Integration test approaches

There are four types of integration testing approaches. Any one (or a mixture) of the following

approaches can be used to develop the integration test plan. Those approaches are the following:

 Big bang approach

 Bottom- up approach

 Top-down approach

 Mixed-approach

Big-Bang Integration Testing

It is the simplest integration testing approach, where all the modules making up a system are

integrated in a single step. In simple words, all the modules of the system are simply put together

and tested. However, this technique is practicable only for very small systems. The main

problem with this approach is that once an error is found during the integration testing, it is very

difficult to localize the error as the error may potentially belong to any of the modules being

integrated. Therefore, debugging errors reported during big bang integration testing are very

expensive to fix.

Bottom-Up Integration Testing

In bottom-up testing, each subsystem is tested separately and then the full system is tested. A

subsystem might consist of many modules which communicate among each other through well-

defined interfaces. The primary purpose of testing each subsystem is to test the interfaces among

various modules making up the subsystem. Both control and data interfaces are tested. The test

cases must be carefully chosen to exercise the interfaces in all possible manners Large software

systems normally require several levels of subsystem testing; lower-level subsystems are

successively combined to form higher-level subsystems. A principal advantage of bottom-up

integration testing is that several disjoint subsystems can be tested simultaneously. In a pure

bottom-up testing no stubs are required, only test-drivers are required. A disadvantage of bottom-

up testing is the complexity that occurs when the system is made up of a large number of small

subsystems. The extreme case corresponds to the big-bang approach.

Top-Down Integration Testing

Top-down integration testing starts with the main routine and one or two subordinate routines in

the system. After the top-level ‘skeleton’ has been tested, the immediately subroutines of the

‘skeleton’ are combined with it and tested. Top-down integration testing approach requires the

use of program stubs to simulate the effect of lower-level routines that are called by the routines

under test. A pure top-down integration does not require any driver routines. A disadvantage of

the top-down integration testing approach is that in the absence of lower-level routines, many

times it may become difficult to exercise the top-level routines in the desired manner since the

lower-level routines perform several low-level functions such as I/O.

Mixed Integration Testing

A mixed (also called sandwiched) integration testing follows a combination of top-down and

bottom-up testing approaches. In top-down approach, testing can start only after the top-level

modules have been coded and unit tested. Similarly, bottom-up testing can start only after the

bottom level modules are ready. The mixed approach overcomes this shortcoming of the top-

down and bottom-up approaches. In the mixed testing approaches, testing can start as and when

modules become available. Therefore, this is one of the most commonly used integration testing

approaches.

Phased Vs. Incremental Testing

The different integration testing strategies are either phased or incremental. A comparison of

these two strategies is as follows:

o In incremental integration testing, only one new module is added to the partial system each

time.

o In phased integration, a group of related modules are added to the partial system each time.

Phased integration requires less number of integration steps compared to the incremental

integration approach. However, when failures are detected, it is easier to debug the system in the

incremental testing approach since it is known that the error is caused by addition of a single

module. In fact, big bang testing is a degenerate case of the phased integration testing approach.

System testing

System tests are designed to validate a fully developed system to assure that it meets its

requirements. There are essentially three main kinds of system testing:

 Alpha Testing. Alpha testing refers to the system testing carried out by the test team within the

developing organization.

 Beta testing. Beta testing is the system testing performed by a select group of friendly

customers.

 Acceptance Testing. Acceptance testing is the system testing performed by the customer to

determine whether he should accept the delivery of the system.

In each of the above types of tests, various kinds of test cases are designed by referring to the

SRS document. Broadly, these tests can be classified into functionality and performance tests.

The functionality test tests the functionality of the software to check whether it satisfies the

functional requirements as documented in the SRS document. The performance test tests the

conformance of the system with the nonfunctional requirements of the system.

Performance Testing

Performance testing is carried out to check whether the system needs the non-functional

requirements identified in the SRS document. There are several types of performance testing.

Among of them nine types are discussed below. The types of performance testing to be carried

out on a system depend on the different non-functional requirements of the system documented

in the SRS document. All performance tests can be considered as black-box tests.

• Stress testing

• Volume testing

• Configuration testing

• Compatibility testing

• Regression testing

• Recovery testing

• Maintenance testing

• Documentation testing

• Usability testing

Stress Testing -Stress testing is also known as endurance testing. Stress testing evaluates system

performance when it is stressed for short periods of time. Stress tests are black box tests which

are designed to impose a range of abnormal and even illegal input conditions so as to stress the

capabilities of the software. Input data volume, input data rate, processing time, utilization of

memory, etc. are tested beyond the designed capacity. For example, suppose an operating system

is supposed to support 15 multi programmed jobs, the system is stressed by attempting to run 15

or more jobs simultaneously. A real-time system might be tested to determine the effect of

simultaneous arrival of several high-priority interrupts.

Stress testing is especially important for systems that usually operate below the maximum

capacity but are severely stressed at some peak demand hours. For example, if the non-functional

requirement specification states that the response time should not be more than 20 secs per

transaction when 60 concurrent users are working, then during the stress testing the response

time is checked with 60 users working simultaneously.

Volume Testing-It is especially important to check whether the data structures (arrays, queues,

stacks, etc.) have been designed to successfully extraordinary situations. For example, a compiler

might be tested to check whether the symbol table overflows when a very large program is

compiled.

Configuration Testing - This is used to analyze system behavior in various hardware and

software configurations specified in the requirements. Sometimes systems are built in variable

configurations for different users. For instance, we might define a minimal system to serve a

single user, and other extension configurations to serve additional users. The system is

configured in each of the required configurations and it is checked if the system behaves

correctly in all required configurations.

Compatibility Testing -This type of testing is required when the system interfaces with other

types of systems. Compatibility aims to check whether the interface functions perform as

required. For instance, if the system needs to communicate with a large database system to

retrieve information, compatibility testing is required to test the speed and accuracy of data

retrieval.

Regression Testing -This type of testing is required when the system being tested is an

upgradation of an already existing system to fix some bugs or enhance functionality,

performance, etc. Regression testing is the practice of running an old test suite after each change

to the system or after each bug fix to ensure that no new bug has been introduced due to the

change or the bug fix. However, if only a few statements are changed, then the entire test suite

need not be run - only those test cases that test the functions that are likely to be affected by the

change need to be run.

Recovery Testing -Recovery testing tests the response of the system to the presence of faults, or

loss of power, devices, services, data, etc. The system is subjected to the loss of the mentioned

resources (as applicable and discussed in the SRS document) and it is checked if the system

recovers satisfactorily. For example, the printer can be disconnected to check if the system

hangs. Or, the power may be shut down to check the extent of data loss and corruption.

Maintenance Testing- This testing addresses the diagnostic programs, and other procedures that

are required to be developed to help maintenance of the system. It is verified that the artifacts

exist and they perform properly.

Documentation Testing- It is checked that the required user manual, maintenance manuals, and

technical manuals exist and are consistent. If the requirements specify the types of audience for

which a specific manual should be designed, then the manual is checked for compliance.

Usability Testing- Usability testing concerns checking the user interface to see if it meets all user

requirements concerning the user interface. During usability testing, the display screens, report

formats, and other aspects relating to the user interface requirements are tested.

Error Seeding

Sometimes the customer might specify the maximum number of allowable errors that may be

present in the delivered system. These are often expressed in terms of maximum number of

allowable errors per line of source code. Error seed can be used to estimate the number of

residual errors in a system. Error seeding, as the name implies, seeds the code with some known

errors. In other words, some artificial errors are introduced into the program artificially. The

number of these seeded errors detected in the course of the standard testing procedure is

determined. These values in conjunction with the number of unseeded errors detected can be

used to predict:

• The number of errors remaining in the product.

• The effectiveness of the testing strategy.

Let N be the total number of defects in the system and let n of these defects be found by testing.

Let S be the total number of seeded defects, and let s of these defects be found during testing.

n/N = s/S

or

N = S × n/s

Defects still remaining after testing = N–n = n×(S – s)/s

Error seeding works satisfactorily only if the kind of seeded errors matches closely with the kind

of defects that actually exist. However, it is difficult to predict the types of errors that exist in a

software. To some extent, the different categories of errors that remain can be estimated to a first

approximation by analyzing historical data of similar projects. Due to the shortcoming that the

types of seeded errors should match closely with the types of errors actually existing in the code,

error seeding is useful only to a moderate extent.

Regression Testing

Regression testing does not belong to either unit test, integration test, or system testing. Instead,

it is a separate dimension to these three forms of testing. The functionality of regression testing

has been discussed earlier.

